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Random sequential adsorption on a dashed line 

B Bonnier, Y Leroyed and E Pommiers 
Labomire  de Physique 'Worique, CNRS, Unit6 Associee 764, Universit6 Bordeaux I, 19 rue 
du Solarium, 33175 Gradignan Cedex, France 

Received 25 October 1994 

Abstract We study analytically and numerically a model of random sequential adsorption 
(RSA) of segments on a line, subject to Some COnSIIaintS suggested by WO types of physical 
situation: (i) deposition of dimers an a lattice where the sites have a spatial extension and 
(E) deposition of extended pmicles which must overlap one (or several) adsorbing sites on 
the snbsirate. Both sysrems involve discrete and continuous degrees of freedom and, in one 
dimension, are equivalent to our model which depends on one length parameter. When this length 
parameter is varied, the model i n t e rpo le  between a variety of !mown situations: monomers 
on a lattice, the'car parking' problem and dimers on a lattice. An analysis of the long time 
behaviour of the coverage as a function of the length parameter exhibits a 1 /r2 approach to the 
jamming limit at the transition point between the fast exponential kinetics, characteristic of the 
lattice model, and anomalous to the l / t  law of the continuous model. 

minu2pt 

1. Introduction 

The model of random sequential adsorption (RSA) describes deposition processes in which 
desorption is negligible and surface diffusion is very slow on fie experimental time scale. 
Particles land successively and randomly on the surface; if an incoming particle overlaps 
a previously deposited one it is rejected as a result of the geometrical exclusion effect. 
This model applies to many physical situations such as adsorption of latex balls, proteins 
or chemisorption at a low temperature [l]. The substrate is either a lattice or a continuous 
surface, depending on the size of the particles relative to the microscopic scale. Many 
versions of the model ha<e been studied so as to adapt it to various physical situations, 
but all share a common universal behaviour for the long time approach to the asymptotic 
coverage depending on the discrete or continuous nature of the substrate. As long as 
the minimum interval between two neighbouring particles on the substrate remains non- 
zero, which i s  the case on a lattice, one can show that the jamming limit is approached 
exponentially [l,  21. Conversely, on a continuum substrate the kinetics follow a power-law 
decay with an exponent that depends on the number of degrees of freedom per particle 
[3-111. For instance, in the onedimensional case where the model is exactly soluble we 
have 

for the deposition of k-mers on a lattice with flux #, whereas 

e,&) = ek(m) - A(k)e"' 

e(t)  = e(w) - Ait  

1  mail: Leroyer@frcpnI1.in2p3.fr 
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for the continuous ‘car parking’ problem [12]. 
In fact, at the mesoscopic scale many physical situations involve both continuous and 

discrete degrees of freedom. For example, with the recent advances in nano-technologies 
it is conceivable to realize a lattice of small gold droplets deposited on a silicon surface 
[13]. The adsorption on this substrate of elongated particles (polymers) with lengths that 
are of the order of the distance between two gold dots can be modelled by the adsorption of 
dimers [14]. However, since the size of the gold dots (typically some nanometres in radius) 
is not negligible with respect to the length of the particles, there will be a continuous range 
of positions for the dimer to be fixed on two neighbouring dots. 

Altematively, large particles like proteins or enzymes can be absorbed on a latticized 
substrate. Such a physical situation is described in [I51 and modelled in the following way. 
Adsorbing sites are randomly or regularly disposed on a continuum substrate; extended 
particles, represented by disks, land on the surface but remain stuck only if they overlap 
one, or several, adsorbing sites. Here the deposition process is again~driven by the discrete 
degree of freedom imposed by the location of the sites, and by a continuous degree of 
freedom associated with the position of the adsorbed particle with respect to the site. 

In this paper, we investigate a one-dimensional RSA model which involves both discrete 
and continuous degrees of freedom. We show that the two physical situations mentioned 
above, when reduced to a one-dimensional substrate, are equivalent to our model. In 
section 2 we present the model and analyse its jamming limit using the result of a numerical 
simulation. Section 3 is devoted to an analysis of the long time behaviour of the coverage 
as derived from the master equations of the model. Our results and the conclusions are 
summarized in section 4. The appendices contain the technical details of the derivation of 
the master equations (appendix A) and of their solution (appendix B). 

2. The model 

2.1. Two equivalent one-dimensional models 

Consider the first example depicted in the introduction. This can be considered as a 
generalization of the lattice dimer model in which the lattice sites have a non-zero extension 
which we set to unity. In the deposition process the dimer ends must stick on this discrete 
set of continuous intervals, the situation where a given interval contains both the end of one 
dimer and the origin of another now being allowed (see figure I(a)). Moreover, the dimer 
length is no longer constrained to be equal to the lattice spacing, but is arbitrary within 
bounds compatible with these adsorbing rules, thereby introducing a new length scale. We 
denote the edge-to-edge distance between two neighbouring sites by a .  The dependence 
of the model on this parameter occurs only in a hivial redefinition of the effective flux 
of incoming particles. Therefore, the model is independent of a provided that we impose 
the condition that a deposited particle overlaps an inter-site interval. The length .& of the 
dimer lies in the interval [a ,  a + 21. We set .f = a + r ,  where r E [0,2] will be the unique 
parameter of the model. This model corresponds to RSA of dimers on a dashed line and in 
the following we will refer to it as model (I). 

Consider now the second example in the introduction where the adsorbing sites are 
regularly disposed and the radius of the particles is smaller than the inter-site distance. In 
one dimension the substrate is a regular lattice, the particle is a segment of length r e 2 
lattice units and the adsorbing rule, aside from the RSA rules, is that the segment must cover 
a site (see figure I(b)). This model corresponds to RSA of segments on a dotted line and in 
the following we will refer to it as model (D. 
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S pvtisic -- 
Figure 1. (a) Description and parametrization 
of model (I): deposition of dimers on extended 
adsorbing sites (dimers on a darhed line). (b) 
Description and parametrization of model (10: 
deposition of segments on localized adsorbing 
sites (segments on a dolled line). 

< I 

r ?  

i ?Idsorbing iim 

(b) 

For r < 1 the two models are exactly equivalent: let the inter-site interval in model (I) 
be identified with the adsorbing site of model (II) (see figure 1). Then, the rule of model 
(I) that a deposited particle must overlap an inter-site interval is equivalent to the adsorbing 
rule of model (II). For r > 1 the constraint imposed in model (I) on the position of the 
particle by the rule that both ends of the dimer must stick on adjacent sites appears in model 
(U) by requiring that a deposited particle cannot overlap two sites. 

In what follows we will consider the one-dimensional model from this point of view 
and from now on everything will refer to model (II). 

2.2. The jamming limic 

The constraint that a deposited particle must overlap one and only one adsorbing site only 
modifies the incoming flux Q by a multiplicative factor of r for r e 1 and 2 - r for r > 1 .  
We define the occupancy rate 0 as the fraction of occupied sites. The covering of the whole 
subseate is rO. 

The jamming limit for this quantity, obtained from a numerical simulation, is presented 
in figure~2 as a function of r .  Let us first analyse this curve qualitatively. Clearly, for r 6 f 
the adsorption of a particle on the site i, regardless of its position on the site, cannot prevent 
the deposition on neighbouring sites. Therefore, each site will be occupied independently 
of its neighbours and the model is completely equivalent to the deposition of monomers on 
a lattice: we expect the asymptotic limit 0 = 1 to be reached exponentially fast. 

Consider now for the site i the most unfavourable situation in the case r < 1, 
(figure 3(a)), where the site i - 1 is occupied by the extreme left edge of a particle and the 
site i + 1 by the extreme right edge of another particle. In this situation the interval for a 
deposition at site i is minimum and has extension 2(1 - r ) .  The deposition is allowed if 
2(1 - r )  > r r < 3. Therefore, for r < 3, we still expect a coverage of all the sites, 
which is effectively observed in figure 2 where @ ( t  = CO) = 1 up to r = 2 Furthermore, 

3 '  since in this r-interval the smallest target has a non-zero extension, the kinetics mnst remain 
lattice-like and the jamming limit is again approached exponentially fast. 
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. . . 
SilC i-2 si lc i.1 sile i site i t 1  

Figure 2. The jamming limit of the model as a 
function of the length r of the adsorbed segments. 
The values of r separating the different regimes are 
indicated. 

Flgure 3. Two extreme situations for the deposition 
in model (11). 

Conversely, consider now the most favourable situation in the case r > 1 (figure 3(b)) 
where the particle deposited on the site i - 1 has its ex@” left edge close to site i - 2. 
The space remaining to adsorb a particle on site i has extension 3 - r .  If this interval is less 
than r (+ r > i), deposition is impossible and the particle at site i - 1 effectively occupies 
two sitest. In this situation, for r > 5 ,  the model is completely equivalent to the lattice 
dimer model [16] and one expects O ( t  ~= CO) = (1 - e-’)/2 = 0.43233.. . (see figure 2). 

Between these two extreme cases, for $ 6 r 6 $, the asymptotic occupancy rate 
.9(t = CO) decreases continuously. .Furthermore, since the target intervals for a particle 
deposition can be arbitrarily small, one expects a power-law dynamics characteristic of a 
continuous modef. The case r = 1 is special: the particle length matches exactIy the inter- 
site distance and the constraint for a landing particle to overlap one and only one adsorbing 
site is automatically satisfied; the discrete nature of the substrate no longer plays any role 
and we recover the ‘car parking’ problem 1121 with jamming limit 8 = 0.747597.. .. 

t ‘This result is more clearly seen in the frammork of model (0. 
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3. The long time behaviour of the coverage 

3.1. The master equations 

We have derived the master equations for the time evolution of the probability of finding at 
time t a gap of given 1en-e. All the technical details are given in appendix A. The result 
is that the coverage S ( t )  can be expressed in terms of a reduced probability P ( x ,  t ) :  

S ( r ) = J d ' d t ' e r r ' J d r d r P ( x . t ' ) P ( r - x , t ' )  forr E [ O , I ]  (1) 
1 

= ~rdt ie(2-r) i '  1-1 dx P ( x ,  t')P(r - x ,  t') for r E [1,2] (2) 

where P ( x ,  t )  is the solution of the following integral equation: 
case r 6 1 ,  x E [O, r ]  

\ .  case r > 1, x E [r - 1, 11 

subject to the initial condition P ( x ,  0) = 1. In equation (3) u(t)  is the Heaviside step 
function and in the last integral of equation (4) b(x) = inf[x + r - 1, l } .  

These equations can be solved exactly in a few special cases corresponding to r 6 4, 
r = 1 and r 2 $, which are presented in the next section. For the generic case 
(r # l), we have devised an iterative construction of the general solution which is developed 
in appendix B and which leads to the following result. 

As a result of the last term in equations (3) and (4). P ( x ,  t )  appears to be' piecewise 
defined with respect to x in successive intervals of length (1 - r )  within the range (0, r )  
for r~ < 1, or of length (r - 1) within the range (r - I ,  2 - r )  for r > 1. The number of 
intervals thus depends on the value of r and is given hy (see appendix A) 

I 3 c r c2 

where [XI denotes the integer part of X. 

terms of a unique x-independent function q( t ) :  
The function P t ( x ,  t )  which coincides with P ( x ,  t )  in the 2th interval is expressed in 

P&, t )  = q ( t )  + / K d x ,  tlt')q(t') dt 

Pl (X,  t )  = q ( t )  

2 < 2 6 k (6) 
0 

where the kernels K&, tlt') are constructed recursively. The function q ( t )  is itself a 
solution of a linear integral equation 

q ( t )  = u0(0  1 + lr t M t 0  dt ' ]  0) 
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where ug(f) is defined by 

1 uo(r) =e-" < r  < 1 

U&) = exp [e-('-')' - (2 - r)t - 11 I e r c 

and the kernels pk are expressed in terms of Kt. 
Even in the simplest case, k = 2, we are unable to find analytic solutions of equation (7). 

However, from these expressions we can extract both approximate solutions and the exact 
asymptotic behaviour for the dynamics of the model which allow us to understand the 
various regimes which interpolate between the special cases depicted in section 3.2. This 
is the object of the following sections. 

3.2. Special cases 

There are three special cases where the rate equations (3) and (4) reduce to a simple form 
which is exactly solvable. 

(i) 0 < r < 1. The number of intervals k is equal to one (see equation (5)). Equation (3) 
yields directly P(x ,  t )  e-rr and 8(r) = I - e-rt which is, as expected, the exact result 
for the deposition of monomers on a lattice up to a factor r in the flux corresponding to 
the target area for each deposition. The limit r + 0 has to be taken carefully: first define 
through equation (1) a coverage s  ̂ as a function of a rescaled time T = rt and then let r 
tend to zero at fixed T .  

(ii) r = 1. The two rate equations (3) and (4) become identical. By means of the ansatz 
P(x ,  t )  = e-l'q(t), we get 

Through equation (1) we recover the well known 'car parking' solution [l, 121. 
(iii) 1 < r 6 2. There is again only one interval. From the rate equation we get directly 

P ( X ,  f) uo(r) = exp [e-('-')' - (2 - r ) t  - 11 

and 
r 

1 8 ( t )  = ('2 - r )  dt'e(2-r~)" U,,(") = 5 [ 1 - exp[-2 + 2e-(z-')r]] 

which is exactly the lattice dimer solution up to a factor due to our definition of 8. The 
limit r -+ 2 has to be considered, like the r + 0 limit, as a scaling limit with respect to 
the rescaled time T = (2 - r) t .  

3.3. The case fr  r < 
According to equation (5) this is the interval (for r < 1) corresponding to the lowest non- 
trivial value k = 2. There are only two reduced probabilities, q(z) and &(x ,  t).  The 
function p&, t') of equation (7) is given by 
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and Kz(x,  tlt') of equation (6) by 

(see appendix B). After some elementary algebra based on the integral representation 
equation (6), one gets from equation (1) a very simple expression for e: 

(8) 
We obtain the exact asymptotic behaviour of the coverage in the following way. From 

the inequality 0 < q( t )  < 1 and equation (7)  it follows that q( t )  < Ce-(l-r)z/t which 
implies that the functions 

0 = I - q2(t)e". 

cn(x, 1) = e-("')'' q(t')t'" df' I' 
have a positive, finite, t + 00 limit for all n 0 and for all x E [0, r ] .  We denote these 
functions C,(x). Expanding the denominator of the kernel pz(t, t') in powers of t ' / f ,  we 
get from equation (7) the asymptotic expansion of q(t)  at large t :  

Inserting this result in equation @)-we obtain for the coverage the asymptotic value 
e(t = 00) = 1 ,  as expected, with the approach 

e-(Z-3r)t 
0(t)  = 1 - Ci(1 - 7)- + .'. . 

t 2  

This equation shows that the kinetics remain exponentially driven over the open interval 
4 < r < 

3.4. The case 3 < r < 

We have studied this case explicitly, where three x-intervals (k = 3) are involved, since we 
expect it to be typical of what happens over the remaining range r c 1. 

Following the method of the previous section, we can derive for the reduced probabilities 
Pz and P3 the following large time behaviour: 

but become l/f2 at the end point r = 3 .  

e-(2r-l)t 

P3(x, t )  = 4 ( x ,  t )  + O  - ( tZ ) 
whereas the asymptotic behaviour of q(f) is still given by equation (9) in spite of it being 
defined from a different kernel m. 

The time derivative of 0 may be expressed in terms of the reduced probabilities as 
follows: 

*(t) =e'' (If"-' Pz(x, t)PZ(i- - x ,  t )& +2q(t) 
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Inserting the previous asymptotic expansion in this expression we get 

A 2B 
O(t) = - + - 

tZ 13 

where A and E are constants depending onIy on r. In particular 

2 - 1  

A = t+wl-, lim co(x,t)co(r - x , t ) & .  

We see that, except at r = a where A vanishes, the leading beha! 

A 
t 

e( t )  =e(m) - -. 

ur of 0 is ( I form 

We have checked this behaviour numerically for r = 0.70 by a simulation on a lattice 
of size L = lo4 sites and up to times t = 100 (in units of number of deposition attempts 
per site). A plot of t(O(m) -e@) )  against t clearly exhibits a constant behaviour for times 
greater than 60, yielding for the constant A of equation (12) a value A = 0.11. We expect 
the long time behaviour of equation (12) to hold over the whole range up to r = 1 where 
it is proved. By reproducing our numerical simulation for r = 0.9 we obtain a perfect 
agreement with equation (12) with A = 0.34. 

For r = 3 we recover the result of the previous section: 

which confirms that this unusual behaviour occurs only at this special value of r. 

3.5. The case 4 < r < 1 
As in the previous section, this corresponds to the first non-trivial interval where k = 2 in 
the case r > 1. The kernels KZ and pz are defined by 

e-x(t-t') - e-(z-r)(,-c') 
--f' (r-l)r &(x ,  tlt') = e e 

t - t' 

The expression for 8 in terms of the reduced probability q(t) is obtained from equation (2): 

One observes that pz is negative, which implies the bound 0 i q(t) < U&) and, from the 
mean-value theorem, the estimate 

1 - e-(3-2r)(f-l') 
- (3 - 2r) { t - f '  

pz(t, t') = e-(z-r)"G(t - t') 

where 
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Inserting this result in equation (7) leads to the asymptotic time expansion of q(t):  

where the bracket reduces to a constant when r goes to 1. From equation (13) this shows 
that the jamming limit @(CO) is reached as l / t .  

4. Summary and conclusions 

We have studied a one-dimensional model of RSA with discrete and continuous degrees of 
freedom. The model depends on one length parameter r :  when this parameter varies over 
the range 0 < r < 2 the model goes through the following regimes. 

(i) 0 < r < 112. Monomer on a lattice; e( t )  = 1 -e-“. 
(ii) f < r < 3 .  Total coverage: non-trivial lattice dynamics: e( t )  = 1 - Ae-(2-3r)r/tZ 

(iii) r = 2/3. Total coverage; anomalous continuous dynamics: e( t )  = 1 - A/t2 for 

(iv) 2/3 < r < 314. Non-trivial asymptotic coverage; normal continuous dynamics: 

(v) r = 1. ‘Car parking’ problem: e(t)  = 0.7476.. . - A / t  for large t .  
(vi) 4 Q r Q 4. Same as for 3 < r < $. 
(vii) f < r < 2. Lattice dimer model; e(t)  = $ [l - exp[-2 + 2e-(’-’)‘]]. 
(viii) a -= r < $. Although we have not investigated this interval analytically (except 

for r = l), we expect the same regime as in the bordering intervals 3 < r < and 
$ Q r Q f to hold, that is, a non-trivial asymptotic coverage decreasing’ with r and l / t  
normal continuous dynamics. We have checked this conjecture numerically. 

The remarkable point is that the kinetics of the model exhibit three ‘phases’: for 
0 < r < 3 where it is latticelike, for < r < f where it is continuous and for 4 Q r < 2 
where it is lattice-like again. At the transition pointr = $ it becomes ‘anomalous’ since the 
jamming limit is approached as l / t 2 ,  in contrast with the general belief that the exponent 
n of the power-law decay is equal to the inverse of the number of degrees of freedom per 
particle. 

The regime on both sides of the transition is characterized by the same typical cross- 
over timet t = 1/12 - 3rl, defined from the slope of the exponential in equation (10) or 
from the ratio B/A in equation (11). This time is such that for t << r the dynamics are 
dominated by a l/t’ behaviour in the two ‘phases’; only for t >> r does the characteristic 
long time behaviour, exponential for r < 3 ,  as l / t  for r > 3 ,  emerge. Since r -+ CO when 
r + 3 ,  this long time regime is squeezed at the transition point r = 3 ,  leaving only the 

for large t .  

large t .  

S(f) = B(m) - A/t  for large t .  

l / tZ  behaviour. 
To find an expression for e(t)  in a closed form is a very difficult technical problem, 

comparable to the determination of the correlation function in the standard ‘car parking’ 
model [17]. However, the properties of the kernel pk allow us to obtain an iterative solution 
of equation (7) from which approximate expressions for the long time coverage can be 
obtained. 

Finally, it may be interesting to investigate these types of models in a more realistic 
physical context, such as a two-dimensional substrate, a disordered disfzibution of adsorbing 

A similar cross-over effect has been observed in the RSA kinetics of very elongated particles in [Ill. 
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sites or the possibility of a particle overlapping several sites. It is, presumably, difficult 
to obtain an analytical insight into such models, but their properties can be numerically 
analysed using the one-dimensional results as a guide. 
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Appendix A. The master equations 

In this appendix we derive the master equations for the probability of finding at time t ,  an 
unoccupied interval (gap) of given length. Let Pn(x, y, t )  be the probability for finding a 
gap of length at least x + y + n - 1, where n is the number of adsorbing sites in the gap 
and x(y )  the distance between the left(right) edge of the gap and the last left(right) site in 
the gap (see figure Al). P1(0,0, t )  is the probability of finding a gap containing at least 
one site, its complement 1 - PI (0, 0, t )  defines the probability that a site is covered by a 
particle, which is equivalent to the occupancy rate: 

0(t) = 1 - P,(O,O, t ) .  

The rate equation for this quantity is 

I 

P i (x , r -x , t )dx  for r  ~ [ 1 , 2 ] .  (A21 
= L 

(In equations (Al) and (A2) and in the subsequent rate equations we have set the effective 
flux of the particles to unity.) Therefore, to determine 0 one needs to know PI(x, y, t) 
only for x and y less than r (case r < 1) or greater than r - 1 (case r > 1) and to set 
x + y = r .  The general rate equations are obtained, as usual, by counting the different ways 
of destroying a gap usin$ the following equations: 

case r < 1, x E [O, rl, y E [O, r] ,  and n > 2 

apn(x’y’t) =[x+y+(n-Z)r]P,(x,y, t )+ P,(x’,y,f)dx’ I‘ - 
at 

case r 2, 1, x E [r - 1,1], y E [r - 1 . 1 1  and n > 2 
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where ~ ( t )  is the Heaviside step function and, in the last equation, b(x) = inf(x+r - 1,  11. 
The probability P,(x,  y .  t )  is subject to the initial condition 

P&, y ,  t = 0) = 1. 

P,&, y .  t )  = e-(n-2)rrp2(x. y ,  t )  

From these equations we see that for n 2, 2 the n dependence can be factorized out: 

for r E [o, 11 (A5) 
, >  (A@ - - e-(n-2)(z-r)f ~ 2 ( x  y t )  for r E [I,  21. 

The function Pz(x, y ,  t )  must be symmetric in its spatial arguments. Moreover, for n > 2 
the left- and right-hand parts of the gap cannot be simultaneously affected by the deposition 
of one dimer, hence the x and y dependence are uncorrelated. We deduce from these 
considerations that 

(A7) 

reducing the problem to that of finding one unknown function P ( x ,  t )  which we will call a 
reduced probability. 

Pz(x. Y .  0 = P(x ,  t ) P ( Y ,  I) 

Cap of lengih x i y m - l  

I l l  I 

I I 
I I 

K Y $  K X X  n IiiCI 

b . .... . . . Figure Al.  The parametrization of the gap. 

The rate equation for the function S ( x ,  y,. t )  is different from equations (A3) and (A4) 
and depends on the value o f  x + y with respect to r .  However, the arguments leading to 
the factorization of the x and y dependences and of the n dependence remain valid for 
x + y 2 r which is precisely the region of interest. This leads to 

P l ( x ,  y .  t )  = e"P(x, t ) P ( y ,  t )  x + y 2 r. 

From this factorization property and the rate equations (Al),and (A2), we can express the 
occupancy rate in terms of the function P, leading to equations (1) and (2): 

e( t )  =l '* 'e" ' l ' d rP(x , t ' )P( r  - x , t ' )  - f o r r  E [0,.11 

I 
= ~ i d t ' e ' Z - ' ) ' ' ~ - , d x P ( x , i ' ) P ( r - x , t ' )  for r  E [1,2]. 

From equations (A3) and (A4) and the factorization properties of P , ( x , y , t ) ,  
equations (A5)-(A7), we deduce the rate equations for the function P, equations (3) and 
(4) of section 3.1, as follows. 

Case r 6 1, x E [0, r ]  
z+,-1 

P(x' ,  t )  dx' + u(x + ~ r  - 1)e-" l P(x', t)dx' (AS) a m ,  t )  
at 

-- 

case r 2, 1, x E [r  - 1,  11 

Due to the last term in equations (AS) and (A9), P ( x ,  f) appears to be piecewise defined 
with respect to x ,  i.e. in successive intervals of length (1 - r )  within the range (0, r )  for 
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r Q 1, or of length (r - 1) within the range (r - 1.2 - r) for r > 1. To be more explicit, 
let us define the set of intervals Ie in the following way. 

F o r O < r  < l d e f i n e k ~ l s u c h t h a t ( k - I ) / k < r < k / ( k + l ) t h e n  

It = [(e - I)( 1 - r), t (1  - r ) ] ~  
Ik = [(k - 1)(1 - r), r l  

1 Q f2 Q k - 1 

which are such that 

(J = Lo, r]. 
e=] 

For 1 < r < 2 define k > 1 such that (k + 2) / (k  + 1) < r Q (k + I)/k then 

II = [ (Z  - 7). 11 

fork > 2 only 

12 = [(k - 1)(r - I), (2 - r ) ]  

fork > 3 only 

I e = [ ( k - e + I ) ( r - 1 ) , ( k - e + 2 ) ( r - 1 ) 1  3 < e < k  

which are such that 

The number k of such intervals is directly expressed in terms of r: 

where [XI means the integer part of X. 

P ( x ,  t )  to the interval It by P&, t ) ,  f2 = 1, . . . , k. 

Appendix B. Integra1 equations for the generic case 

In this appendix we derive the representation of equations (6) and (7) from equations (A8) 
and (A9) and we give the expressions for the kernels Ke and p~ and of the function ug. 

We first remark that the reduced probability P , ( x , t )  is in fact independent of n: 
P I ( X , Z )  q(t). Consider the left-hand bordering site of the gap in the case r Q 1 .  
There is a vacant space of length at least 1 - r from its right-hand edge independent of 
the occupation of its left-hand neighbour: this means that P ( x ,  t )  is independent of x for 
n E [0, 1 - r]. The same property holds in the case r > 1 for x E [2 - r, 11. 

We start with the case r < 1. For 1 - r < x < r we differentiate equation (A8) with 
respect to x to obtain 

In the following appendix, for a given value of r, we will denote the restriction of 

< P < i, T # I 
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Then integrating with respect to t ,  using the initial condition a P ( x ,  O)/ax = 0, we obtain 

Finally, we integrate with respect to x ,  taking into account the boundary condition 
P ( x  = I - r, t )  = q(t) ,  to obtain 

r+r-1 
p ( x ,  f) = q(t)  -e-(1-?)f df' e-@-l)t' 1 
By using equation @lo) repeatedly as x increases, one obtains equation (6): 

dx' e*"''-f)P(x'. t'). (BlO) 1[ 
Pi@, t )  = q(t) + KP.(x, tlt')q(t')dt 

when x E 12 then x' E Z I  where P(x' ,  t') = q(t'), equation @IO) gives equation (6) with 
e = 2 and the following expression for the kernel Kz: 

2 < e < k. l 

When x E Z3, by including the previous result in equation (B10) we obtain equation (6) for 
e = 3 with the explicit form of the kernel K3, and so on. 

Analogous manipulations can be performed on equation (A9) for the case r > 1 for 
x < 2 - r ,  where the boundary condition is now P ( x  = 2 - r,  t) = q(t). The equation 
equivalent to equation @lo) is 

which by repeated application as x decreases gives the representation of equation (6). For 
x E Z2 one obtains the kemel Kz: 

Assuming that for a given value of r all the KP. are known, one can define a kemel 
U&, t'): 

and derive an integral equation for q( t ) .  Considering equations (AS) and (As) where x is 
fixed to the value x = 1 - r (case r < 1 )  or x = 2 - r (case r 1) and using equation (6) 
for PP.(x, t ) ,  one obtains respectively 

f 

-%(t) = rq(t) + q(t ')q(t ,  t')dt' r < l  
dt 

---(!I dq = (2 - r)[1+ e-('-')']q(t) + 
dt 

By integrating with respect to t with the initial condition q(0)  = 1 we obtain equation (7): 

l 'q(t ' )uk(t ,  t')dt' r > 1. 

4 0 )  =U&) {I + lr p k 0 .  t')q(tOdt'] 



1860 B Bonnier et a1 

where for r < 1 
1’ 

rco(t) =e-‘‘ m(t, t ’ )  = 1  er"'^&". t’)df” 

and for r 1 
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